开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

王雅轩 · 2023年01月20日

老师,我还是没太理解

NO.PZ2016070202000013

问题如下:

The historical simulation (HS) approach is based on the empirical distributions and a large number of risk factors. The RiskMetrics approach assumes normal distributions and uses mapping on equity indices. The HS approach is more likely to provide an accurate estimate of VAR than the RiskMetrics approach for a portfolio that consists of

选项:

A.

A small number of emerging market securities

B.

A small number of broad market indices

C.

A large number of emerging market securities

D.

A large number of broad market indices

解释:

The question deals with the distribution of the assets and the effect of diversification. Emerging market securities are more volatile and less likely to be normally distributed than broad market indices. In addition, a small portfolio is less likely to be well represented by a mapping approach, and is less likely to be normal. The RiskMetrics approach assumes that the conditional distribution is normal and simplifies risk by mapping. This will be acceptable with a large number of securities with distributions close to the normal, which is answer D Answer A describes the least diversified portfolio, for which the HS method is best.

讲义中说 why mapping? 1 计算量大 2特征随着时间改变 3数据太少时


那就意味着 当数据少时 适合mapping, 那这个题不就是数据多时用HS更好嘛


1 个答案
已采纳答案

DD仔_品职助教 · 2023年01月22日

嗨,爱思考的PZer你好:


同学你好,

RiskMetrics的假设是正态分布,当数据量很多的时候,一般样本大于等于30的时候我们就认为他是服从正态分布了,所以数据量大时用riskmetrics。

而在新兴市场中容易出现极端事件,并且新兴市场和其他成熟市场相比,数据量是比较小的,虽然数据肯定大于30,但是保险起见还是认为不太符合正态分布的,所以用历史数据法更好一些。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 1

    回答
  • 0

    关注
  • 265

    浏览
相关问题

NO.PZ2016070202000013问题如下 The historicsimulation (HS) approais baseon the empiricstributions ana large number of risk factors. The RiskMetriapproaassumes normstributions anuses mapping on equity inces. The HS approais more likely to provi accurate estimate of Vththe RiskMetriapproafor a portfolio thconsists ofA.A small number of emerging market securitiesB.A small number of bromarket incesC.A large number of emerging market securitiesA large number of bromarket incesThe question als with the stribution of the assets anthe effeof versification. Emerging market securities are more volatile anless likely to normally stributethbromarket inces. In aition, a small portfolio is less likely to well representea mapping approach, anis less likely to normal. The RiskMetriapproaassumes ththe contionstribution is normansimplifies risk mapping. This will acceptable with a large number of securities with stributions close to the normal, whiis answer Answer A scribes the least versifieportfolio, for whithe HS methois best.riskmetrics在讲义哪里讲到?

2023-04-11 11:15 1 · 回答

NO.PZ2016070202000013 问题如下 The historicsimulation (HS) approais baseon the empiricstributions ana large number of risk factors. The RiskMetriapproaassumes normstributions anuses mapping on equity inces. The HS approais more likely to provi accurate estimate of Vththe RiskMetriapproafor a portfolio thconsists of A.A small number of emerging market securities B.A small number of bromarket inces C.A large number of emerging market securities A large number of bromarket inces The question als with the stribution of the assets anthe effeof versification. Emerging market securities are more volatile anless likely to normally stributethbromarket inces. In aition, a small portfolio is less likely to well representea mapping approach, anis less likely to normal. The RiskMetriapproaassumes ththe contionstribution is normansimplifies risk mapping. This will acceptable with a large number of securities with stributions close to the normal, whiis answer Answer A scribes the least versifieportfolio, for whithe HS methois best. 老师请问riskmetrics是什么模型?这题怎么理解?包含了大量新兴市场的数据,波动性更大的异常数据多了算的不是更精确吗?

2022-11-03 15:20 1 · 回答

NO.PZ2016070202000013 这个题是不是超纲了呀,没看到知识点,然后想问一下HS的方法如果small的数据是不是也不好呀,答这道题的时候很困惑呀,不知道从哪里入手

2022-03-03 21:50 1 · 回答

NO.PZ2016070202000013 这里说针对少数据的新兴市场用HS更好,但是不是也说过,就是由于新兴市场数据不够多,HS无法捕捉到足够多的数据,所以会缺失tail loss,而通过假设正态分布来应用在缺少样本量的新兴市场的话,可以获取到更多的尾部数据,所以用正态分布的假设会更好不是吗?

2021-03-30 00:49 1 · 回答