NO.PZ2017092702000113
问题如下:
For a sample size of 37, with a mean of 116.23 and a variance of 245.55, the width of a 90% confidence interval using the appropriate t-distribution is closest to:
选项:
A.
8.5480.
B.
8.6970
C.
8.8456.
解释:
B is correct.
The confidence interval is calculated using the following equation:
Sample standard deviation (s) = = 15.670.
For a sample size of 37, degrees of freedom equal 36, so t0.05 = 1.688.
The confidence interval is calculated as:
Therefore, the interval spans 120.5785 to 111.8815, meaning its width is equal to approximately 8.6970. (This interval can be alternatively calculated as 4.3485 × 2).
样本标准差的计算如下:
= 15.670.
当样本=37,自由度=36,那么 t0.05 = 1.688.
自信区间计算如下:
因此,自信区间为:111.8815 - 120.5785,这意味着其宽度大约等于 8.6970。 (这个区间也可以计算为 4.3485 × 2)。
老师,我算出来了,标准误是标准差15.67/根号37,得出2.58。这个就是样本的标准差。 但是我接下来,就是用90%的区间,那么就是1.65个标准差,所以用2.58*1.65*2,请问这个为什么不对?