NO.PZ2018062003000067
问题如下:
For a market of perfect competition, the demand schedule is defined as P = 165– 3Q (for Q ≤ 55). For each company in the long-run, the total cost is given by: 125 + Q + 5Q2, the average cost is given by: 125/Q + 1 + 5Q, the marginal cost is given by: 1 + 10Q. At which of the following price, new competitors are most likely to enter?
选项:
A.
135.
B.
51.
C.
45.
解释:
B is correct
In a perfectly competitive market, for each company in the long-run, only when MC = AC = P, would the equilibrium be expected.
we can draw the equation:
MC=AC: 1 + 10Q = 125/Q + 1 + 5Q, Q=5.
At that time, P=MC= 1 + 10Q = 51
If the price is higher than 51, new competitors will enter for economic profits .
考点:完全竞争市场
解析:在完全竞争市场中,存在条件 MC = AC = P,
联立MC=AC: 1 + 10Q = 125/Q + 1 + 5Q, Q=5.,
解得:P=MC= 1 + 10Q = 51。
注意到,之所以不用需求函数 P = 165– 3Q参与联立是因为这里给的是整个市场的需求函数,而非单个厂商的 。但是题目给定的MC,AC都是单个厂商的关系式,所以整个市场的需求函数与它们并不匹配,不能参与联立。
我的理解是厂商只有当市场中存在economic profit>0的时候新的厂商才会更愿意选择进入,当然等于0的时候也可以进入,虽然economic profit=0,但是此时可以赚取accounting profit。但是题目问的是最有可能的价格,我觉得应该是A,解析中也提到了,价格应该大于51。