开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

吴超 Cassie · 2022年06月18日

关于方差到底用哪个公式求的问题

NO.PZ2021062201000003

问题如下:

A two-stock portfolio includes stocks with the following characteristics:


What is the standard deviation of portfolio returns?

选项:

A.

14.91%

B.

18.56%

C.

21.10%

解释:

B is correct. The covariance between the returns for the two stocks is

Cov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60.

The portfolio variance is:

σ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})

=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)

=12.96 +306.25 +25.2

=344.41

The portfolio standard deviation is:

σ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%

知识点:Probability Concepts

现在碰到好几种求方差的题型:最常规的就是基于历史数据直接求得算数平均,也可以根据概率求加权平均,或者像本题一样用公式计算。请问这道题为什么不能用概率求加权平均呢,然后怎么样根据题目选择合适的方法计算方差,老师可不可以分别举一下例子,谢谢!

1 个答案

星星_品职助教 · 2022年06月18日

同学你好,

本题要求的是组合的标准差,并非单个资产的标准差,所以需要代入的是两资产组合的公式来求。

题干明确给出概率,求单个资产标准差时,用加权平均来计算,概率为权重。

如果没有给出概率,只给了一堆离散的数字,按照算术平均来求。

  • 1

    回答
  • 0

    关注
  • 481

    浏览
相关问题

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 还是在portfolio里如果有AB两个产品的情况下,AB的covaraince就是portfolio的variance

2023-07-28 17:35 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 如上

2023-07-28 17:30 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 麻烦详细讲讲COV(R1,R2)的计算过程,谢谢

2023-03-12 22:24 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 我有点迷糊CV和COV的区别,可以麻烦下吗?

2023-01-03 00:24 2 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts COV为什么是这样算的?跟视频里老师讲的不一样啊

2022-11-30 07:20 1 · 回答