开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Cooljas · 2022年05月17日

请教下 用这三个概率怎么查表呀?

NO.PZ2020010303000011

问题如下:

If the return on a stock, R, is normally distributed with a daily mean of 8%/252 and a daily variance of (20%)2/252(20\%)^2/252, find the values where

a. Pr(R < r) = .001

b. Pr(R < r) = .01

c. Pr(R < r) = .05

选项:

解释:

a. The mean is 0.031% per day and the variance is 1.58 per day (so that the standard deviation is 1.26% per day). To find these values, we transform the variable to be standard normal, so that

Pr(R<r)=.001=Pr(Z<rμσ)=.001 Pr(R < r) = .001 = Pr(Z<\frac{r-\mu}{\sigma})= .001

The value for the standard normal is -3.09

(NORM.S.INV(0.001) in Excel) so that 3.09σ+μ=3.86%-3.09 * \sigma + \mu = -3.86\%.

b. The same idea an be used here where z = -2.32 so that Pr(Z < z) = .01. Transforming this value, r=2.32σ+μ=2.89%r = -2.32 * \sigma + \mu = -2.89\%.

c. Here the value of z is -1.645 so that r=1.645σ+μ=2.04%r = -1.645 * \sigma + \mu = -2.04\%.

These are all common VaR quan-tiles and suggest that there is a 5% chance that the return would be less than -2.04% on any given day, a 1% change that it would be less than -2.89%, and a one in 1,000 chance that the return would be less than -3.86%, if returns were normally distributed.



2 个答案

李坏_品职助教 · 2022年05月18日

嗨,努力学习的PZer你好:


精确答案可以用excel的红框里面的公式得到:

所以四舍五入结果是2.33,答案这里不是很精确

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

李坏_品职助教 · 2022年05月17日

嗨,努力学习的PZer你好:


0.05是α值,在标准正态分布表里,我们要去找最接近1-α的那个数字对应的x值。

在标准正态分布表里面第一列是x的整数位和小数点后第一位数字,第一行是x的小数点后第二位数字,所以你会发现x=1.65的时候,对应的数字是0.9505,是最接近0.95的,所以α=0.05的时候,对应的标准差倍数就是1.65倍了。

----------------------------------------------
努力的时光都是限量版,加油!

Cooljas · 2022年05月18日

当α是0.01的时候,查表得z=2.33的概率明明更接近于0.99,为啥答案中取的z=2.32呢?

  • 2

    回答
  • 0

    关注
  • 474

    浏览
相关问题

NO.PZ2020010303000011问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 老师好,方差是用20%^2/252吗?这样算,得出的是方差是0.0158%,而不是1.58%。另外,20%^2大于252,能直接用20%^2除以252吗?

2024-05-27 14:22 2 · 回答

NO.PZ2020010303000011 问题如下 If the return on a stock, R, is normally stributewith a ily meof 8%/252 ana ily varianof (20%)2/252(20\%)^2/252(20%)2/252, finthe values where Pr(R r) = .001Pr(R r) = .01Pr(R r) = .05 The meis 0.031% per y anthe varianis 1.58 per y (so ththe stanrviation is 1.26% per y). To finthese values, we transform the variable to stanrnormal, so thatPr(R r)=.001=Pr(Z r−μσ)=.001 Pr(R r) = .001 = Pr(Z \frac{r-\mu}{\sigma})= .001 Pr(R r)=.001=Pr(Z σr−μ​)=.001The value for the stanrnormis -3.09(NORM.S.INV(0.001) in Excel) so th−3.09∗σ+μ=−3.86%-3.09 * \sigma + \mu = -3.86\%−3.09∗σ+μ=−3.86%.The same ia usehere where z = -2.33 so thPr(Z z) = .01. Transforming this value, r=−2.33∗σ+μ=−2.89%r = -2.33 * \sigma + \mu = -2.89\%r=−2.33∗σ+μ=−2.89%.Here the value of z is -1.645 so thr=−1.645∗σ+μ=−2.04%r = -1.645 * \sigma + \mu = -2.04\%r=−1.645∗σ+μ=−2.04%.These are all common Vquan-tiles ansuggest ththere is a 5% chanththe return woulless th-2.04% on any given y, a 1% change thit woulless th-2.89%, ana one in 1,000 chanththe return woulless th-3.86%, if returns were normally stribute 请问这是已知概率,反求z的取值吗?查表方式可以计算?

2024-01-15 00:20 4 · 回答

老师,这道题你了,但是我没有理解,请详细下这套题的分析过程。

2020-02-22 18:13 1 · 回答

a ily varianof (20%)²>252 怎么推出“the varianis 1.58 per y (so ththe stanrviation is 1.26% per y)”?

2020-02-15 20:01 1 · 回答