嗨,努力学习的PZer你好:
这道题中的A选项,似乎表达没有问题。因为按照一条static的yield curve roll down,那么半年后,这只4.5-year bond确实是按照更小的YTM折现呀?
是的,A选项这个表达确实从普通意义上是对的,它没有表达出题人真正的意思,同学图上右上角何老师画的那张在同一条static的yield curve上,4.5年期也是比5年期要小的(因为我们通常假设向上倾斜的曲线),这样来看A选项说的没错。但是实际上出题人的意思是不能用在6个月后下降25bp这个YTM来计算rolldown return。所以其实A选项想表达和B选项一样的意思。同学可以这样想哈,题目没有假设收益率曲线向上倾斜,加入是一条平行的收益率曲线呢,这样的话A就绝对错了是不是?这一点呢何老师上课也有提到,原版书包括一些例题直接是使用不变的利率计算rolldown return,这个明显是没有考虑全面,或者说没有给明前提条件(比如说假设收益率曲线平行),这是原版书现在改版后写得不好的地方。实际考试中应该不会出现这样有争议的描述哈。
关于roll down return正负的判断,我们来看两个例子
1、premium或者discount发行,随着到期日临近,债券价格会趋近于面值,此时,Price也发生变化,举个例子:
ytm=3%,coupon=3.5%,N=3
期初P0:101.14(FV=100,PMT=3.5,N=3,I/Y=3)
一年后P1:100.9567(FV=100,PMT=3.5,N=2,I/Y=3)①
此时也有price appreciation,100.9567-101.14,只不过是负的,但需要注意,它并不是rolldown return带来的,它是我们记账成本的变化,不是capital gain/loss。
2、rolldown return一定是capital gain/loss产生的price appreciation,还是举这个例子。
一年后,ytm沿着曲线向下走,债券剩余2年,要用2年期的ytm,如果收益率曲线向上,且stable,那么一年后2年期的ytm与期初2年期ytm一样,比如是2%。
那么此时的P1:102.912341(FV=100,N=2,PMT=3.5,I/Y=2)②
①与②的唯一区别是折现率不一样,①的折现率是期初的3年期ytm,②的折现率是期初的2年期ytm。用②得到的price与期初P0一起计算,102.912341/101.14-1=1.7%,才是rolldown return,用①得到的price与期初p0一起计算,100.9567/101.14-1,得到的并不是rolldown return。
所以说,rolldown一定是在收益率曲线保持不变,期末用一个更低的折现率来折现(假设收益率曲线向上倾斜),得到的价格与期初的价格计算的price return,如果收益率曲线向上倾斜,期末的价格一定大于期初,得到的rolldown return一定为正,如果收益率曲线向下倾斜,得到的rolldown return一定为负。
B选项,我有个疑惑,计算yield对bond value带来的影响,公式是否是 Mod duration*Market value*25bp 呢?(何老师说是modD*mv*1bp*25bp),我似乎有点搞不清楚了。。
因为BPV=modD*mv*1bp,B选项明确提到了bpv。
C选项中为什么要强调这个bond是zero-coupon零息债呢?
C选项其实也有问题,看我第一个问题的解答,rolldown return的正负其实不应该和溢价折价有关,而且零息债券也不可能溢价发行。
这里出题人想考的知识点其实应该是何老师讲解的时候画的从溢价拉到par value那张图的知识点。同学还是掌握原理,如果考试遇到这样的题,尽量依据题干信息来做题,但一般是不会出现这样的争议性题目。
----------------------------------------------努力的时光都是限量版,加油!