开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

moon · 2022年05月08日

为什么不能直接用Var=u-z*standard deviation公式算99%可能性下最大损失

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 0.015% and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 0.015% yield volatility over 21 trading days equals 16 bps = (0.015% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

为什么不能直接用Var=u-z*standard deviation公式算99%可能性下最大损失


要先求收益率的改变,而且为什么收益率改变=u-z*standard deviation,这个不是求Var的公式吗?

2 个答案

pzqa015 · 2022年05月11日

嗨,爱思考的PZer你好:


本题让计算的是Bond Position的var,也就是一定概率下债券市值的最大损失。

根据△P=-P*md*△y,只有当△y取正且最大时,△P变动方向为负且最大,此时可以得到债券市值的最大损失。

所以,我们要先找到△y取正的最大值。

根据Var的公式,|μmonthly-2.33σmonthly|,这个公式得到是以μ为原点,向左、向右的最大值,向左得到的是最大亏损,向右得到的是最大收益。

如果已知y的μ和σ,-2.33σmonthly得到就是△y取负的最大值,2.33σmonthly得到的就是△y取正的最大值

所以,要用2.33*0.015%*21^(1/2)得到△y取正的最大值,进而根据△P=-P*md*△y来计算出bond position的最大损失。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

pzqa015 · 2022年05月11日

嗨,努力学习的PZer你好:


不好意思同学,这里写错了,应该是0.015%,不是0.08%。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 2

    回答
  • 0

    关注
  • 677

    浏览
相关问题

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 请问本题是做了修正吗?默认0.015% yielvolatility是针对y的,不是lta y/y 吗

2024-07-17 23:50 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师您好,我按照答案公式计算,得到的结果是$1,235,347。是不是协会把计算公式改了,答案没改?

2024-06-15 10:03 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 啥时候开始算VaR要算上price和ytm?VaR不是|μ-2.33×σ|×market value 吗我算的是 0.015%×√21×2.33×73million 答案跟A相近才选的A,但是不理解为什么解析里面要多乘上的价格和收益率。

2024-02-04 16:24 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 日度VaR,变成月度VaR,乘以根号21,是计算公式,没问题;日度VaR的计算公式里没有久期,所以,为什么要乘以久期?

2024-01-07 16:36 3 · 回答