开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

面白い · 2020年10月27日

问一道题:NO.PZ2016031001000124

问题如下:

A bond with exactly nine years remaining until maturity offers a 3% coupon rate with annual coupons. The bond, with a yield-to-maturity of 5%, is priced at 85.784357 per 100 of par value. The estimated price value of a basis point for the bond is closest to:

选项:

A.

0.0086.

B.

0.0648.

C.

0.1295.

解释:

B is correct.

The PVBP is closest to 0.0648. The formula for the price value of a basis pointis:

PVBP=(PV)(PV+)2PVBP=\frac{(PV-)-(PV+)}2

where:

PVBP = price value of a basis point

PV– = full price calculated by lowering the yield-to-maturity by one basis point

PV+ = full price calculated by raising the yield-to-maturity by one basis point

Lowering the yield-to-maturity by one basis point to 4.99% results in a bond price of 85.849134:

PV=3(1+0.0499)1++3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cdots+\frac{3+100}{{(1+0.0499)}^9}=85.849134

Increasing the yield-to-maturity by one basis point to 5.01% results in a bond price of 85.719638:

PV+=3(1+0.0501)1++3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cdots+\frac{3+100}{{(1+0.0501)}^9}=85.719638

PVBP=85.84913485.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475

Alternatively, the PVBP can be derived using modified duration:

ApproxModDur=(PV)(PV+)2×(ΔYield)×(PV0)ApproxModDur=\frac{(PV-)-(PV+)}{2\times(\Delta Yield)\times(PV0)}

ApproxModDur=85.84913485.7196382×0.0001×85.784357=7.548ApproxModDur=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548

PVBP = 7.548 × 85.784357 × 0.0001 = 0.06475

老师,想接着这道题请教一个知识点:为什么说duration越大,interest rate risk越大呢?我之前理解的是D越大,所以期限长,所以利率风险越大。。想请教一下正确的思考。

1 个答案
已采纳答案

吴昊_品职助教 · 2020年10月28日

同学你好:

duration就是衡量的是利率变动对债券价格带来的影响,或者是债券价格对于利率变化的敏感程度。利率风险就是由于利率的改变对债券价格带来的不确定影响,影响越大,就说明利率风险越高。现在duration越大,就说明利率变化一点点,债券价格就会有很大的改变,这不就是利率风险很大嘛。duration就可以看成是衡量利率风险的指标。

  • 1

    回答
  • 1

    关注
  • 1016

    浏览
相关问题

NO.PZ2016031001000124 问题如下 A bonwith exactly nine years remaining until maturity offers a 3% coupon rate with annucoupons. The bon with a yielto-maturity of 5%, is price85.784357 per 100 of pvalue. The estimateprivalue of a basis point for the bonis closest to: A.0.0086. B.0.0648. C.0.1295. B is correct.The PVis closest to 0.0648. The formula for the privalue of a basis pointis: PVBP=(PV−)−(PV+)2PVBP=\frac{(PV-)-(PV+)}2PVBP=2(PV−)−(PV+)​where:PV= privalue of a basis pointPV– = full pricalculatelowering the yielto-maturity one basis pointPV+ = full pricalculateraising the yielto-maturity one basis pointLowering the yielto-maturity one basis point to 4.99% results in a bonpriof 85.849134:PV−=3(1+0.0499)1+⋯+3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cts+\frac{3+100}{{(1+0.0499)}^9}=85.849134PV−=(1+0.0499)13​+⋯+(1+0.0499)93+100​=85.849134Increasing the yielto-maturity one basis point to 5.01% results in a bonpriof 85.719638:PV+=3(1+0.0501)1+⋯+3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cts+\frac{3+100}{{(1+0.0501)}^9}=85.719638PV+=(1+0.0501)13​+⋯+(1+0.0501)93+100​=85.719638PVBP=85.849134−85.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475PVBP=285.849134−85.719638​=0.06475Alternatively, the PVcriveusing mofieration:ApproxMour=(PV−)−(PV+)2×(ΔYiel×(PV0)ApproxMour=\frac{(PV-)-(PV+)}{2\times(\lta Yiel\times(PV0)}ApproxMour=2×(ΔYiel×(PV0)(PV−)−(PV+)​ApproxMour=85.849134−85.7196382×0.0001×85.784357=7.548ApproxMour=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548ApproxMour=2×0.0001×85.78435785.849134−85.719638​=7.548PV= 7.548 × 85.784357 × 0.0001 = 0.06475考点PVBP解析PVBP衡量的是利率变化1bp,带来的债券价格变化。分别算出利率下降1个bp的债券价格PV-(85.849134)和利率上升一个bp的债券价格PV+(85.719638),两者相减再除以2,即可得PVBP=0.0648,故B正确。注意如果直接算出PV+(或PV-),它和原本的PV之间本身就是由于利率变化1bp造成的,所以两者直接相减即可,不需要除以2。 如果分别算出PV-和PV+,那么它俩之间是由于利率相差2bps造成的,所以相减之后需要除以2。 老师想问一下这句话怎么理解 “price85.784357 per 100 of pvalue” 在这道题中又怎么用呢。 如果我直接用 (PV_-PV+)/2 可以吗

2024-07-18 05:28 1 · 回答

NO.PZ2016031001000124 问题如下 A bonwith exactly nine years remaining until maturity offers a 3% coupon rate with annucoupons. The bon with a yielto-maturity of 5%, is price85.784357 per 100 of pvalue. The estimateprivalue of a basis point for the bonis closest to: A.0.0086. B.0.0648. C.0.1295. B is correct.The PVis closest to 0.0648. The formula for the privalue of a basis pointis: PVBP=(PV−)−(PV+)2PVBP=\frac{(PV-)-(PV+)}2PVBP=2(PV−)−(PV+)​where:PV= privalue of a basis pointPV– = full pricalculatelowering the yielto-maturity one basis pointPV+ = full pricalculateraising the yielto-maturity one basis pointLowering the yielto-maturity one basis point to 4.99% results in a bonpriof 85.849134:PV−=3(1+0.0499)1+⋯+3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cts+\frac{3+100}{{(1+0.0499)}^9}=85.849134PV−=(1+0.0499)13​+⋯+(1+0.0499)93+100​=85.849134Increasing the yielto-maturity one basis point to 5.01% results in a bonpriof 85.719638:PV+=3(1+0.0501)1+⋯+3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cts+\frac{3+100}{{(1+0.0501)}^9}=85.719638PV+=(1+0.0501)13​+⋯+(1+0.0501)93+100​=85.719638PVBP=85.849134−85.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475PVBP=285.849134−85.719638​=0.06475Alternatively, the PVcriveusing mofieration:ApproxMour=(PV−)−(PV+)2×(ΔYiel×(PV0)ApproxMour=\frac{(PV-)-(PV+)}{2\times(\lta Yiel\times(PV0)}ApproxMour=2×(ΔYiel×(PV0)(PV−)−(PV+)​ApproxMour=85.849134−85.7196382×0.0001×85.784357=7.548ApproxMour=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548ApproxMour=2×0.0001×85.78435785.849134−85.719638​=7.548PV= 7.548 × 85.784357 × 0.0001 = 0.06475考点PVBP解析PVBP衡量的是利率变化1bp,带来的债券价格变化。分别算出利率下降1个bp的债券价格PV-(85.849134)和利率上升一个bp的债券价格PV+(85.719638),两者相减再除以2,即可得PVBP=0.0648,故B正确。注意如果直接算出PV+(或PV-),它和原本的PV之间本身就是由于利率变化1bp造成的,所以两者直接相减即可,不需要除以2。 如果分别算出PV-和PV+,那么它俩之间是由于利率相差2bps造成的,所以相减之后需要除以2。 The estimateprivalue of a basis point for the bonis closest to,题目的问题是如何对应在PVBP计算知识点上的

2024-05-22 21:46 1 · 回答

NO.PZ2016031001000124问题如下A bonwith exactly nine years remaining until maturity offers a 3% coupon rate with annucoupons. The bon with a yielto-maturity of 5%, is price85.784357 per 100 of pvalue. The estimateprivalue of a basis point for the bonis closest to:A.0.0086.B.0.0648.C.0.1295. B is correct.The PVis closest to 0.0648. The formula for the privalue of a basis pointis: PVBP=(PV−)−(PV+)2PVBP=\frac{(PV-)-(PV+)}2PVBP=2(PV−)−(PV+)​where:PV= privalue of a basis pointPV– = full pricalculatelowering the yielto-maturity one basis pointPV+ = full pricalculateraising the yielto-maturity one basis pointLowering the yielto-maturity one basis point to 4.99% results in a bonpriof 85.849134:PV−=3(1+0.0499)1+⋯+3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cts+\frac{3+100}{{(1+0.0499)}^9}=85.849134PV−=(1+0.0499)13​+⋯+(1+0.0499)93+100​=85.849134Increasing the yielto-maturity one basis point to 5.01% results in a bonpriof 85.719638:PV+=3(1+0.0501)1+⋯+3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cts+\frac{3+100}{{(1+0.0501)}^9}=85.719638PV+=(1+0.0501)13​+⋯+(1+0.0501)93+100​=85.719638PVBP=85.849134−85.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475PVBP=285.849134−85.719638​=0.06475Alternatively, the PVcriveusing mofieration:ApproxMour=(PV−)−(PV+)2×(ΔYiel×(PV0)ApproxMour=\frac{(PV-)-(PV+)}{2\times(\lta Yiel\times(PV0)}ApproxMour=2×(ΔYiel×(PV0)(PV−)−(PV+)​ApproxMour=85.849134−85.7196382×0.0001×85.784357=7.548ApproxMour=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548ApproxMour=2×0.0001×85.78435785.849134−85.719638​=7.548PV= 7.548 × 85.784357 × 0.0001 = 0.06475考点PVBP解析PVBP衡量的是利率变化1bp,带来的债券价格变化。分别算出利率下降1个bp的债券价格PV-(85.849134)和利率上升一个bp的债券价格PV+(85.719638),两者相减再除以2,即可得PVBP=0.0648,故B正确。注意如果直接算出PV+(或PV-),它和原本的PV之间本身就是由于利率变化1bp造成的,所以两者直接相减即可,不需要除以2。 如果分别算出PV-和PV+,那么它俩之间是由于利率相差2bps造成的,所以相减之后需要除以2。 请问算pv+和pv-能用计算器吗?

2022-08-04 03:47 1 · 回答

NO.PZ2016031001000124 问题如下 A bonwith exactly nine years remaining until maturity offers a 3% coupon rate with annucoupons. The bon with a yielto-maturity of 5%, is price85.784357 per 100 of pvalue. The estimateprivalue of a basis point for the bonis closest to: A.0.0086. B.0.0648. C.0.1295. B is correct.The PVis closest to 0.0648. The formula for the privalue of a basis pointis: PVBP=(PV−)−(PV+)2PVBP=\frac{(PV-)-(PV+)}2PVBP=2(PV−)−(PV+)​where:PV= privalue of a basis pointPV– = full pricalculatelowering the yielto-maturity one basis pointPV+ = full pricalculateraising the yielto-maturity one basis pointLowering the yielto-maturity one basis point to 4.99% results in a bonpriof 85.849134:PV−=3(1+0.0499)1+⋯+3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cts+\frac{3+100}{{(1+0.0499)}^9}=85.849134PV−=(1+0.0499)13​+⋯+(1+0.0499)93+100​=85.849134Increasing the yielto-maturity one basis point to 5.01% results in a bonpriof 85.719638:PV+=3(1+0.0501)1+⋯+3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cts+\frac{3+100}{{(1+0.0501)}^9}=85.719638PV+=(1+0.0501)13​+⋯+(1+0.0501)93+100​=85.719638PVBP=85.849134−85.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475PVBP=285.849134−85.719638​=0.06475Alternatively, the PVcriveusing mofieration:ApproxMour=(PV−)−(PV+)2×(ΔYiel×(PV0)ApproxMour=\frac{(PV-)-(PV+)}{2\times(\lta Yiel\times(PV0)}ApproxMour=2×(ΔYiel×(PV0)(PV−)−(PV+)​ApproxMour=85.849134−85.7196382×0.0001×85.784357=7.548ApproxMour=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548ApproxMour=2×0.0001×85.78435785.849134−85.719638​=7.548PV= 7.548 × 85.784357 × 0.0001 = 0.06475考点PVBP解析PVBP衡量的是利率变化1bp,带来的债券价格变化。分别算出利率下降1个bp的债券价格PV-(85.849134)和利率上升一个bp的债券价格PV+(85.719638),两者相减再除以2,即可得PVBP=0.0648,故B正确。注意如果直接算出PV+(或PV-),它和原本的PV之间本身就是由于利率变化1bp造成的,所以两者直接相减即可,不需要除以2。 如果分别算出PV-和PV+,那么它俩之间是由于利率相差2bps造成的,所以相减之后需要除以2。 老师我想问下哈,这道题考的是PVBP的知识点,一般来说题目是不是会告诉你rate变动多少,是不是在没有说的情况下,我们就默认利率向上或向下变动1%,谢谢

2022-08-01 07:10 1 · 回答

NO.PZ2016031001000124 0.0648. 0.1295. B is correct. The PVis closest to 0.0648. The formula for the privalue of a basis pointis: PVBP=(PV−)−(PV+)2PVBP=\frac{(PV-)-(PV+)}2PVBP=2(PV−)−(PV+)​ where: PV= privalue of a basis point PV– = full pricalculatelowering the yielto-maturity one basis point PV+ = full pricalculateraising the yielto-maturity one basis point Lowering the yielto-maturity one basis point to 4.99% results in a bonpriof 85.849134: PV−=3(1+0.0499)1+⋯+3+100(1+0.0499)9=85.849134PV-=\frac3{{(1+0.0499)}^1}+\cts+\frac{3+100}{{(1+0.0499)}^9}=85.849134PV−=(1+0.0499)13​+⋯+(1+0.0499)93+100​=85.849134 Increasing the yielto-maturity one basis point to 5.01% results in a bonpriof 85.719638: PV+=3(1+0.0501)1+⋯+3+100(1+0.0501)9=85.719638PV+=\frac3{{(1+0.0501)}^1}+\cts+\frac{3+100}{{(1+0.0501)}^9}=85.719638PV+=(1+0.0501)13​+⋯+(1+0.0501)93+100​=85.719638 PVBP=85.849134−85.7196382=0.06475PVBP=\frac{85.849134-85.719638}2=0.06475PVBP=285.849134−85.719638​=0.06475 Alternatively, the PVcriveusing mofieration: ApproxMour=(PV−)−(PV+)2×(ΔYiel×(PV0)ApproxMour=\frac{(PV-)-(PV+)}{2\times(\lta Yiel\times(PV0)}ApproxMour=2×(ΔYiel×(PV0)(PV−)−(PV+)​ ApproxMour=85.849134−85.7196382×0.0001×85.784357=7.548ApproxMour=\frac{85.849134-85.719638}{2\times0.0001\times85.784357}=7.548ApproxMour=2×0.0001×85.78435785.849134−85.719638​=7.548 PV= 7.548 × 85.784357 × 0.0001 = 0.06475 考点PV解析PVBP衡量的是利率变化1bp,带来的债券价格变化。 分别算出利率下降1个bp的债券价格PV-(85.849134)和利率上升一个bp的债券价格PV+(85.719638),两者相减再除以2,即可得PVBP=0.0648,故B正确。 注意如果直接算出PV+(或PV-),它和原本的PV之间本身就是由于利率变化1bp造成的,所以两者直接相减即可,不需要除以2。 如果分别算出PV-和PV+,那么它俩之间是由于利率相差2bps造成的,所以相减之后需要除以2。 如题。。。。。。。谢谢。

2022-01-14 17:52 1 · 回答