问题如下:
Grandparents are funding a newborn’s future university tuition costs, estimated at $50,000/year for four years, with the first payment due as a lump sum in 18 years. Assuming a 6% effective annual rate, the required deposit today is closest to:
选项:
A.$60,699.
B.$64,341.
C.$68,201.
解释:
B is correct.
First, find the present value (PV) of an ordinary annuity in Year 17 that represents the tuition costs: = $50,000 × 3.4651 = $173,255.28. Then, find the PV of the annuity in today’s dollars (where FV is future value):
PV0 = $64,340.85 ≈ $64,341.
问题:有关18岁支付学费使用的年金方法应该是先付你年金,还是后付年金。
截取“你第一步计算PV的方法并不是上课讲过的方法,也比较复杂。完全没有必要那么考虑,直接用上课讲过按计算器算PV即可。普通年金,N=4,PMT=50,000,I/Y=6, FV=0,CPT PV=-173255.28“
自己理解:
老师,这里学费都是每年年初支付的,所以我用BGN的计算器方法进行了
BGN--N=4,PMT=50,000,I/Y=6, FV=0,CPT PV=183650.5974
麻烦解释一下,题目在这一步为何用了后付年金的方法?