开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

nash · 2024年06月30日

expected change in yield change公式

* 问题详情,请 查看题干

NO.PZ202303270300007102

问题如下:

(2) What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50 bps and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 1.50 bps yield volatility over 21 trading days equals 16 bps = (1.50 bps × 2.33 standard deviations × 211/2). We can quantify the bond’s market value change by multiplying the familiar (–ModDur × △Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)).

'the expected change in yield based on a 99% confidence interval for the bond and a 1.50 bps yield volatility over 21 trading days equals 16 bps = (1.50 bps × 2.33 standard deviations × 211/2).'

老师可以列一下公式吗? 公式不是 mean +/- k* sd 吗?


1 个答案

pzqa31 · 2024年06月30日

嗨,努力学习的PZer你好:


1% daily Var=|μdaily-2.33σdaily|


对于monthly Var,σmonthly=21^1/2*σdaily,μmonthly=21*μdaily

因为假设正态分布,μ=0

另外,这里应该是根号21,答案这里应该是错了。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 181

    浏览
相关问题

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师,我按照基础班讲义“P335-336”的例题做的,按照讲义的做法,当给出的是0.8bps,是利率变动波动率即σ(△y/y),所以需要转换成利率波动率,即σ(△y)=y×σ(△y/y)=4%×0.8%,再进行计算。若按照基础班讲义做,此题已知的是bps,应该也是利率变动波动率吧?则σ(△y)=2.85%×1.5%=0.0428%VaR=2.33×0.0428%×21^½=0.4569%VaR=(-9.887)×0.4569%×(75,000,000×104.0175/100) = -3,524,141.74答案没有该,是我哪一块理解错了,还是答案有问题呢?

2024-08-06 01:00 1 · 回答

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 讲义里公式是change in bonposition=-ration*change in YTM*MktValue, 这里(–9.887 × .0016)就已经算出新加入portfolio的价格变动率了,直接乘以market value不行吗, 还是说change in bonposition这个公式算的也是percentage change in bonprice?

2024-08-03 01:17 1 · 回答

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 即99% confininterv(equto 2.33 stanrviations) 这些

2024-07-12 13:46 1 · 回答

NO.PZ202303270300007102问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 这题麻烦给讲一下,怎么做的

2023-08-02 21:46 2 · 回答