NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 助教给到的其他人解答的计算器算出来的是后付年金,不是答案。但题目是先付年金,所以计算器要怎么按
NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. N=5, I/Y=4,FV=0,PMT=300, CPT PV=1335.5
NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 是不是求PV就设FV是0,求FV就设PV是0呀?
NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 請問r不是應該等于0.04嗎,爲何會有個(1+0.4)^5?
NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 请问为什么我用计算器BGN模式算出来是1498?求具体计算器怎么按谢谢