开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

lin · 2020年10月25日

问一道题:NO.PZ2016082406000034

问题如下:

Suppose XYZ Corp. has two bonds paying semiannually according to the following table:

The recovery rate for each in the event of default is 50%. For simplicity, assume that each bond will default only at the end of a coupon period. The market-implied risk-neutral probability of default for XYZ Corp. is

选项:

A.

Greater in the first six-month period than in the second

B.

Equal between the two coupon periods

C.

Greater in the second six-month period than in the first

D.

Cannot be determined from the information provided

解释:

ANSWER: A

First, we compute the current yield on the six-month bond, which is selling at a discount. We solve for y* such that 99=1041+y20099\text{=}\frac{104}{1+\frac{y\ast}{200}} and find y=10.10%y\ast\text{=}10.10\%. Thus the yield spread for the first bond is 10.1-5.5=4.6%10.1\text{-}5.5\text{=}4.6\%. The second bond is at par, so the yield is y=9%y\ast\text{=}9\%. The spread for the second bond is   9-6=3%\;9\text{-}6\text{=}3\%. The default rate for the first period must be greater. The recovery rate is the same for the two periods, so it does not matter for this problem.

老师好,这道题我感觉不用考虑那么复杂,感觉都没有考YTM-Rf≈PD*(1-RR)这个知识点。题目问题问的是XYZ这家公司的违约概率是在上半年高还是下半年高。XYZ公司一共包含了两个债券,第一个A债券只有半年,在第6个月付一次息,第二个B债券是一年,分别在第6个月和1年末付息;而题目还提到了在付息的时候可能会发生违约,那么其实在第6个月的时候,XYZ这家公司违约的概率就是A违约B不违约+B违约A不违约+AB都违约,而在1年末的违约概率是B违约,这样一比较,肯定是在第6个月的时候要更高吧?之前有个同学这么理解的,我觉得很在理,想问问老师这么理解是不是正确的

1 个答案

品职答疑小助手雍 · 2020年10月26日

嗨,从没放弃的小努力你好:


我觉得这样想就失去考题的意义了。考察角度肯定还是从RR一样的话,spread的对比入手来的。

不过这个老题出的确实不好,不用太在意这个题啦。


-------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!


  • 1

    回答
  • 0

    关注
  • 401

    浏览
相关问题

NO.PZ2016082406000034 Equbetween the two coupon perio Greater in the seconsix-month periothin the first Cannot terminefrom the information provi ANSWER: A First, we compute the current yielon the six-month bon whiis selling a scount. We solve for y* suth99=1041+y∗20099\text{=}\frac{104}{1+\frac{y\ast}{200}}99=1+200y∗​104​ anfiny∗=10.10%y\ast\text{=}10.10\%y∗=10.10%. Thus the yielsprefor the first bonis 10.1-5.5=4.6%10.1\text{-}5.5\text{=}4.6\%10.1-5.5=4.6%. The seconbonis par, so the yielis y∗=9%y\ast\text{=}9\%y∗=9%. The sprefor the seconbonis   9-6=3%\;9\text{-}6\text{=}3\%9-6=3%. The fault rate for the first periomust greater. The recovery rate is the same for the two perio, so it es not matter for this problem.我们求出来的是secon or remaining 6-month,这个和first 6-month有什么关系啊?

2021-04-12 11:12 1 · 回答

NO.PZ2016082406000034 Equbetween the two coupon perio Greater in the seconsix-month periothin the first Cannot terminefrom the information provi ANSWER: A First, we compute the current yielon the six-month bon whiis selling a scount. We solve for y* suth99=1041+y∗20099\text{=}\frac{104}{1+\frac{y\ast}{200}}99=1+200y∗​104​ anfiny∗=10.10%y\ast\text{=}10.10\%y∗=10.10%. Thus the yielsprefor the first bonis 10.1-5.5=4.6%10.1\text{-}5.5\text{=}4.6\%10.1-5.5=4.6%. The seconbonis par, so the yielis y∗=9%y\ast\text{=}9\%y∗=9%. The sprefor the seconbonis   9-6=3%\;9\text{-}6\text{=}3\%9-6=3%. The fault rate for the first periomust greater. The recovery rate is the same for the two perio, so it es not matter for this problem.请问这里为什么是y*/200?为什么是200呢

2021-03-29 11:36 1 · 回答

NO.PZ2016082406000034 Suppose XYZ Corp. htwo bon paying semiannually accorng to the following table: The recovery rate for eain the event of fault is 50%. For simplicity, assume theabonwill fault only the enof a coupon perio The market-implierisk-neutrprobability of fault for XYZ Corp. is Greater in the first six-month periothin the seconEqubetween the two coupon perio Greater in the seconsix-month periothin the first Cannot terminefrom the information provi ANSWER: A First, we compute the current yielon the six-month bon whiis selling a scount. We solve for y* suth99=1041+y∗20099\text{=}\frac{104}{1+\frac{y\ast}{200}}99=1+200y∗​104​ anfiny∗=10.10%y\ast\text{=}10.10\%y∗=10.10%. Thus the yielsprefor the first bonis 10.1-5.5=4.6%10.1\text{-}5.5\text{=}4.6\%10.1-5.5=4.6%. The seconbonis par, so the yielis y∗=9%y\ast\text{=}9\%y∗=9%. The sprefor the seconbonis   9-6=3%\;9\text{-}6\text{=}3\%9-6=3%. The fault rate for the first periomust greater. The recovery rate is the same for the two perio, so it es not matter for this problem. 我还以为是假设1个月付息一次,一年假设360天,然后计算量巨大

2021-03-05 01:37 1 · 回答

Suppose XYZ Corp. htwo bon paying semiannually accorng to the following table: The recovery rate for eain the event of fault is 50%. For simplicity, assume theabonwill fault only the enof a coupon perio The market-implierisk-neutrprobability of fault for XYZ Corp. is Greater in the first six-month periothin the seconEqubetween the two coupon perio Greater in the seconsix-month periothin the first Cannot terminefrom the information provi ANSWER: A First, we compute the current yielon the six-month bon whiis selling a scount. We solve for y* suth99=1041+y∗20099\text{=}\frac{104}{1+\frac{y\ast}{200}}99=1+200y∗​104​ anfiny∗=10.10%y\ast\text{=}10.10\%y∗=10.10%. Thus the yielsprefor the first bonis 10.1-5.5=4.6%10.1\text{-}5.5\text{=}4.6\%10.1-5.5=4.6%. The seconbonis par, so the yielis y∗=9%y\ast\text{=}9\%y∗=9%. The sprefor the seconbonis   9-6=3%\;9\text{-}6\text{=}3\%9-6=3%. The fault rate for the first periomust greater. The recovery rate is the same for the two perio, so it es not matter for this problem. 请问公式中,y*/200是什么意思呢

2020-04-29 17:23 1 · 回答