开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Grace Zhu · 2020年03月23日

问一道题:NO.PZ2017092702000006 [ CFA I ]

问题如下:

For a lump sum investment of ¥250,000 invested at a stated annual rate of 3% compounded daily, the number of months needed to grow the sum to ¥1,000,000 is closest to:

选项:

A.

555.

B.

563.

C.

576.

解释:

A is correct.

The effective annual rate (EAR) is calculated as follows:

EAR = (1 + Periodic interest rate)m – 1   EAR = (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financial calculator results in (where FV is future value and PV is present value): (1 + 0,030453)N = FVN/PV = ¥1,000,000/¥250,000)So,N = 46.21 years, which multiplied by 12 to convert to months results in 554.5, or ≈ 555 months.

PV,FV,PMT,I/Y,CPT N,分别输入那些数字啊? PV=250000,FV=1000000,PMT=?,I/Y=3.0453%
1 个答案

星星_品职助教 · 2020年03月23日

同学你好,

三个地方需要注意:

1. 如果没有期间现金流,那么说明这道题是一个single cash flow问题而不是年金问题,这种情况下PMT直接输入0

2. I/Y的输入不能带百分号

3. PV和FV(有时候还有PMT)的符号要注意,如果PV,FV都输入正数,PMT又是0,那么计算器会显示error

本题的输入可以参考 PV=-250,000,FV=1,000,000,PMT=0,I/Y=3.0453,CPT N=46.21。 注意这里算出来的N的单位是年,因为输入的I/Y是年利率。所以再转化为月即可。

  • 1

    回答
  • 0

    关注
  • 353

    浏览
相关问题

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 这题我EAR已经算出来是3.045,带入计算器知四求一不知道为什么算出来是46.21.

2023-06-02 16:31 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 不能用上面这个去试,是因为不能默认每个月30天么?谢谢

2023-05-28 15:18 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 为什么用 FVN/PV

2023-03-14 11:28 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 我直接就是计算器计算的 I/Y是3÷365 pmt=0 然后分别代入pv和fv最后求出是16867再除以三十天 是562.24

2022-11-22 02:27 3 · 回答

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months.请问这一步是什么意思,是怎么求得的46.21呢。我算到日利率为0.030453就不知道怎么往下算了

2022-11-11 06:02 3 · 回答