开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

红豆生南国 · 2019年11月11日

问一道题:NO.PZ2017092702000114

问题如下:

For a sample size of 65 with a mean of 31 taken from a normally distributed population with a variance of 529, a 99% confidence interval for the population mean will have a lower limit closest to:

选项:

A.

23.64.

B.

25.41.

C.

30.09.

解释:

A is correct.

To solve, use the structure of Confidence interval = Point estimate ± Reliability factor × Standard error, which, for a normally distributed population with known variance, is represented by the following formula:X±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}

For a 99% confidence interval, use z0.005 = 2.58. Also, σ = 529\sqrt{529} = 23. Therefore, the lower limit = .31  2.58 2365= 23.639831\text{ }-\text{ }2.58\text{ }\frac{23}{\sqrt{65}}=\text{ }23.6398

老师 这题是求置信区间的吧?

套用公式 X±Z a/2 * σ/n根号,那可靠因子 Z a/2怎么求啊?

1 个答案

星星_品职助教 · 2019年11月11日

同学你好,

这道题是求置信区间的,核心考点是中心极限定理和标准误。回忆一下上课的内容,这个Z α/2是critical value,这个值不是求出来的,而是查表查出来的。

需要自己计算得出的值是在假设检验里的计算检验统计量,然后用检验统计量和critical value相比看是否拒绝原假设。

这道题问的是99%的置信区间,所以简单的方法是可以用我们上课要求背的那一组值,直接得出2.58. 也可以用原版书附录里的表自己查一下加深印象。

加油

  • 1

    回答
  • 0

    关注
  • 363

    浏览
相关问题

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 老师,这种题型的计算思考步骤是什么呢,总是容易搞混,看题找不到方向?谢谢老师

2023-06-06 23:49 1 · 回答

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 请问为什么 No.PZ2017092702000113 (选择题),这道题的置信区间计算需要使用“分母根号下n-1”,即需要用自由度求解,但是这道题不需要呢?请问老师区别在哪里?谢谢老师

2023-04-12 16:32 1 · 回答

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 请问老师,我有两个问题,第一个是如果题干没有告诉我应该用到什么分布的话,我怎么判断是应该用z分布还是t分布呢?第二个问题是,我现在很混乱z分布和t分布的计算有什么区别呢》唯一的区别就是t分布的计算是自由度-1是吗,z分布就直接用sample zise的数量?

2022-12-13 06:49 1 · 回答

NO.PZ2017092702000114问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to:A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 ​为什么样本标准差不是除以根号64呢?

2022-11-06 16:45 1 · 回答

NO.PZ2017092702000114问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to:A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 ​为什么这个n用的65,但是上一题t分布里面n用的n37,查表用的 36呢?

2022-07-07 15:19 1 · 回答