开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

James · 2024年10月25日

这道题题干的翻译

* 问题详情,请 查看题干

NO.PZ202108100100000203

问题如下:

Based on Exhibit 3, Johnson should determine that the annualized equilibrium fixed swap rate for Japanese yen is closest to:

选项:

A.

0.0624%.

B.

0.1375%.

C.

0.2496%.

解释:

C is correct.

The equilibrium swap fixed rate for yen is calculated as

rJPY=1PVn,JPY(1)i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}

The yen present value factors are calculated as

PV(1)i,JPY=11+Rspoti,JPY(NADiNTD)PV(1)_{i,JPY}=\frac1{1+R_{spot_{i,JPY}}({\displaystyle\frac{NAD_i}{NTD}})}

where

90-day PV factor =1/[1+0.0005(90/360)] = 0.999875.

180-day PV factor =1/[1+0.0010(180/360)] = 0.999500.

270-day PV factor =1/[ 1+0.0015(270/360)] = 0.998876.

360-day PV factor =1/[ 1+0.0025(360/360)] = 0.997506.

Sum of present value factors = 3.995757.

Therefore, the yen periodic rate is calculated as

rJPY=1PVn(1)i=14PVi(1)=10.9975063.995757=0.000624=0.0624%r_{JPY}=\frac{1-PV_n(1)}{\sum_{i=1}^4PV_i(1)}=\frac{1-0.997506}{3.995757}=0.000624=0.0624\%

The annualized rate is (360/90) times the periodic rate of 0.0624%, or 0.2496%.

中文解析:

本题考察的是货币互换求定价。货币换求定价和普通的利率互换求定价是一样的,都是根据公式:rJPY=1PVn,JPY(1)i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}来计算即可。

需要注意的是根据此公式求得的fixed rate需要年化后才是我们要求的swap rate。这里要和第(1)小问作一下区分。

我理解这里买了一个一年期日元兑美元的固定对固定的外汇swap,然后又让我们求一个日元的fix swap rate,没读懂意思

1 个答案

李坏_品职助教 · 2024年10月25日

嗨,从没放弃的小努力你好:


对于currency swap固定换固定(也就是日元的fixed rate与美元的fixed rate相互交换)的情况下,每个币种的固定利率都是参考该币种的interest rate swap的计算方法求出fixed rate。


本题问的是日元的fixed rate是多少?

那需要假设有一个日元的固定换浮动的interest rate swap,利用题目给出的日元的折现因子,求出fixed rate即可。

fixed rate of 日元 = (1-360-day PV factor) / (PV factor求和).

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 29

    浏览
相关问题

NO.PZ202108100100000203 问题如下 Baseon Exhibit 3, Johnson shoultermine ththe annualizeequilibrium fixeswrate for Japanese yen is closest to: A.0.0624%. B.0.1375%. C.0.2496%. C is correct. The equilibrium swfixerate for yen is calculateasrJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​The yen present value factors are calculateasPV(1)i,JPY=11+Rspoti,JPY(NANTPV(1)_{i,JPY}=\frac1{1+R_{spot_{i,JPY}}({\splaystyle\frac{NAi}{NT})}PV(1)i,JPY​=1+Rspoti,JPY​​(NTA​​)1​where90-y PV factor =1/[1+0.0005(90/360)] = 0.999875.180-y PV factor =1/[1+0.0010(180/360)] = 0.999500.270-y PV factor =1/[ 1+0.0015(270/360)] = 0.998876.360-y PV factor =1/[ 1+0.0025(360/360)] = 0.997506.Sum of present value factors = 3.995757.Therefore, the yen perioc rate is calculateasrJPY=1−PVn(1)∑i=14PVi(1)=1−0.9975063.995757=0.000624=0.0624%r_{JPY}=\frac{1-PV_n(1)}{\sum_{i=1}^4PV_i(1)}=\frac{1-0.997506}{3.995757}=0.000624=0.0624\%rJPY​=∑i=14​PVi​(1)1−PVn​(1)​=3.9957571−0.997506​=0.000624=0.0624%The annualizerate is (360/90) times the perioc rate of 0.0624%, or 0.2496%.中文解析本题考察的是货币互换求定价。货币换求定价和普通的利率互换求定价是一样的,都是根据公式rJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​来计算即可。需要注意的是根据此公式求得的fixerate需要年化后才是我们要求的swrate。这里要和第(1)小问作一下区分。 老师你好,请问计算florate的时候为什么是单利形式呢?能总结下,什么情况单利,什么情况复利么?

2024-03-15 17:56 1 · 回答

NO.PZ202108100100000203 问题如下 Baseon Exhibit 3, Johnson shoultermine ththe annualizeequilibrium fixeswrate for Japanese yen is closest to: A.0.0624%. B.0.1375%. C.0.2496%. C is correct. The equilibrium swfixerate for yen is calculateasrJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​The yen present value factors are calculateasPV(1)i,JPY=11+Rspoti,JPY(NANTPV(1)_{i,JPY}=\frac1{1+R_{spot_{i,JPY}}({\splaystyle\frac{NAi}{NT})}PV(1)i,JPY​=1+Rspoti,JPY​​(NTA​​)1​where90-y PV factor =1/[1+0.0005(90/360)] = 0.999875.180-y PV factor =1/[1+0.0010(180/360)] = 0.999500.270-y PV factor =1/[ 1+0.0015(270/360)] = 0.998876.360-y PV factor =1/[ 1+0.0025(360/360)] = 0.997506.Sum of present value factors = 3.995757.Therefore, the yen perioc rate is calculateasrJPY=1−PVn(1)∑i=14PVi(1)=1−0.9975063.995757=0.000624=0.0624%r_{JPY}=\frac{1-PV_n(1)}{\sum_{i=1}^4PV_i(1)}=\frac{1-0.997506}{3.995757}=0.000624=0.0624\%rJPY​=∑i=14​PVi​(1)1−PVn​(1)​=3.9957571−0.997506​=0.000624=0.0624%The annualizerate is (360/90) times the perioc rate of 0.0624%, or 0.2496%.中文解析本题考察的是货币互换求定价。货币换求定价和普通的利率互换求定价是一样的,都是根据公式rJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​来计算即可。需要注意的是根据此公式求得的fixerate需要年化后才是我们要求的swrate。这里要和第(1)小问作一下区分。 如题

2023-10-20 14:53 1 · 回答

NO.PZ202108100100000203 问题如下 Baseon Exhibit 3, Johnson shoultermine ththe annualizeequilibrium fixeswrate for Japanese yen is closest to: A.0.0624%. B.0.1375%. C.0.2496%. C is correct. The equilibrium swfixerate for yen is calculateasrJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​The yen present value factors are calculateasPV(1)i,JPY=11+Rspoti,JPY(NANTPV(1)_{i,JPY}=\frac1{1+R_{spot_{i,JPY}}({\splaystyle\frac{NAi}{NT})}PV(1)i,JPY​=1+Rspoti,JPY​​(NTA​​)1​where90-y PV factor =1/[1+0.0005(90/360)] = 0.999875.180-y PV factor =1/[1+0.0010(180/360)] = 0.999500.270-y PV factor =1/[ 1+0.0015(270/360)] = 0.998876.360-y PV factor =1/[ 1+0.0025(360/360)] = 0.997506.Sum of present value factors = 3.995757.Therefore, the yen perioc rate is calculateasrJPY=1−PVn(1)∑i=14PVi(1)=1−0.9975063.995757=0.000624=0.0624%r_{JPY}=\frac{1-PV_n(1)}{\sum_{i=1}^4PV_i(1)}=\frac{1-0.997506}{3.995757}=0.000624=0.0624\%rJPY​=∑i=14​PVi​(1)1−PVn​(1)​=3.9957571−0.997506​=0.000624=0.0624%The annualizerate is (360/90) times the perioc rate of 0.0624%, or 0.2496%.中文解析本题考察的是货币互换求定价。货币换求定价和普通的利率互换求定价是一样的,都是根据公式rJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​来计算即可。需要注意的是根据此公式求得的fixerate需要年化后才是我们要求的swrate。这里要和第(1)小问作一下区分。 题目问的是美元和日元的固定对固定的互换利率,为什么答案计算的是日元本身的固定对浮动利率?

2023-07-02 15:23 2 · 回答

NO.PZ202108100100000203问题如下 Baseon Exhibit 3, Johnson shoultermine ththe annualizeequilibrium fixeswrate for Japanese yen is closest to: A.0.0624%.B.0.1375%.C.0.2496%. C is correct. The equilibrium swfixerate for yen is calculateasrJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​The yen present value factors are calculateasPV(1)i,JPY=11+Rspoti,JPY(NANTPV(1)_{i,JPY}=\frac1{1+R_{spot_{i,JPY}}({\splaystyle\frac{NAi}{NT})}PV(1)i,JPY​=1+Rspoti,JPY​​(NTA​​)1​where90-y PV factor =1/[1+0.0005(90/360)] = 0.999875.180-y PV factor =1/[1+0.0010(180/360)] = 0.999500.270-y PV factor =1/[ 1+0.0015(270/360)] = 0.998876.360-y PV factor =1/[ 1+0.0025(360/360)] = 0.997506.Sum of present value factors = 3.995757.Therefore, the yen perioc rate is calculateasrJPY=1−PVn(1)∑i=14PVi(1)=1−0.9975063.995757=0.000624=0.0624%r_{JPY}=\frac{1-PV_n(1)}{\sum_{i=1}^4PV_i(1)}=\frac{1-0.997506}{3.995757}=0.000624=0.0624\%rJPY​=∑i=14​PVi​(1)1−PVn​(1)​=3.9957571−0.997506​=0.000624=0.0624%The annualizerate is (360/90) times the perioc rate of 0.0624%, or 0.2496%.中文解析本题考察的是货币互换求定价。货币换求定价和普通的利率互换求定价是一样的,都是根据公式rJPY=1−PVn,JPY(1)∑i=14PVi,JPY(1)r_{JPY}=\frac{1-PV_{n,JPY}(1)}{\sum_{i=1}^4PV_{i,JPY}(1)}rJPY​=∑i=14​PVi,JPY​(1)1−PVn,JPY​(1)​来计算即可。需要注意的是根据此公式求得的fixerate需要年化后才是我们要求的swrate。这里要和第(1)小问作一下区分。 您好,ys to maturity不是距离到期的时间吗?为什么求PVF的时候是用这个天数来折现呀

2022-10-23 13:00 1 · 回答