开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

stephy · 2018年08月30日

问一道题:NO.PZ2016082406000005 [ FRM II ]

选项3看不出来,麻烦老师讲下可以吗

问题如下图:

选项:

A.

B.

C.

D.

解释:

1 个答案
已采纳答案

orange品职答疑助手 · 2018年08月30日

同学你好,第三个命题,它出的不太好,我也求了导进行计算,但因为参数p和LGD的方差、LGD的期望未知,而无法进行比较。不用管它啦。

stephy · 2018年08月30日

谢谢老师,麻烦老师费心,如果关于这个题有了新的思路麻烦再跟我讲下,如果没有就算了。谢谢

orange品职答疑助手 · 2018年08月31日

好的应该的

  • 1

    回答
  • 0

    关注
  • 360

    浏览
相关问题

fine unexpecteloss (UL) the stanrviation of losses anexpecteloss (EL) the average loss. Further fine LGloss given fault, anE the expectefault frequency. Whiof the following statements hols) true? I.     EL increases linearly with increasing E. II.   EL is often higher thUL. III. With increasing E, UL increases a mufaster rate thEL. IV. The lower the LG the higher the percentage loss for both the EL anUL. I only I anII I anIII II anIV ANSWER: C Equation: E(CL)=E(n)E(LG=NpE(LGE{(CL)}=E{(n)}E{(LG}=NpE{(LG}E(CL)=E(n)E(LG=NpE(LGshows thEL increases linearly with p, so answer I. is correct. Answer II. is not correct, certainly for concentrateportfolios. Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​shows thUL increases faster thEL linearly with p, so answer III. is correct. Finally, Answer II. is incorrect, higher (not lower) LGwoulleto higher cret losses. 你好请问III应该怎么理解,为什么一单位P上升UL比EL提升多

2020-10-23 12:51 1 · 回答

fine unexpecteloss (UL) the stanrviation of losses anexpecteloss (EL) the average loss. Further fine LGloss given fault, anE the expectefault frequency. Whiof the following statements hols) true? I.     EL increases linearly with increasing E. II.   EL is often higher thUL. III. With increasing E, UL increases a mufaster rate thEL. IV. The lower the LG the higher the percentage loss for both the EL anUL. I only I anII I anIII II anIV ANSWER: C Equation: E(CL)=E(n)E(LG=NpE(LGE{(CL)}=E{(n)}E{(LG}=NpE{(LG}E(CL)=E(n)E(LG=NpE(LGshows thEL increases linearly with p, so answer I. is correct. Answer II. is not correct, certainly for concentrateportfolios. Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​shows thUL increases faster thEL linearly with p, so answer III. is correct. Finally, Answer II. is incorrect, higher (not lower) LGwoulleto higher cret losses. 请问III如何理解

2020-08-26 13:27 1 · 回答

fine unexpecteloss (UL) the stanrviation of losses anexpecteloss (EL) the average loss. Further fine LGloss given fault, anE the expectefault frequency. Whiof the following statements hols) true? I.     EL increases linearly with increasing E. II.   EL is often higher thUL. III. With increasing E, UL increases a mufaster rate thEL. IV. The lower the LG the higher the percentage loss for both the EL anUL. I only I anII I anIII II anIV ANSWER: C Equation: E(CL)=E(n)E(LG=NpE(LGE{(CL)}=E{(n)}E{(LG}=NpE{(LG}E(CL)=E(n)E(LG=NpE(LGshows thEL increases linearly with p, so answer I. is correct. Answer II. is not correct, certainly for concentrateportfolios. Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​shows thUL increases faster thEL linearly with p, so answer III. is correct. Finally, Answer II. is incorrect, higher (not lower) LGwoulleto higher cret losses. 老师4 错哪里了

2020-08-16 21:59 1 · 回答

I anII I anIII II anIV ANSWER: C Equation: E(CL)=E(n)E(LG=NpE(LGE{(CL)}=E{(n)}E{(LG}=NpE{(LG}E(CL)=E(n)E(LG=NpE(LGshows thEL increases linearly with p, so answer I. is correct. Answer II. is not correct, certainly for concentrateportfolios. Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​shows thUL increases faster thEL linearly with p, so answer III. is correct. Finally, Answer II. is incorrect, higher (not lower) LGwoulleto higher cret losses.老师,这个E指的是什么?

2020-05-22 17:19 2 · 回答

fine unexpecteloss (UL) the stanrviation of losses anexpecteloss (EL) the average loss. Further fine LGloss given fault, anE the expectefault frequency. Whiof the following statements hols) true? I.     EL increases linearly with increasing E. II.   EL is often higher thUL. III. With increasing E, UL increases a mufaster rate thEL. IV. The lower the LG the higher the percentage loss for both the EL anUL. I only I anII I anIII II anIV ANSWER: C Equation: E(CL)=E(n)E(LG=NpE(LGE{(CL)}=E{(n)}E{(LG}=NpE{(LG}E(CL)=E(n)E(LG=NpE(LGshows thEL increases linearly with p, so answer I. is correct. Answer II. is not correct, certainly for concentrateportfolios. Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​shows thUL increases faster thEL linearly with p, so answer III. is correct. Finally, Answer II. is incorrect, higher (not lower) LGwoulleto higher cret losses. E(CL)=E(n)E(LG=NpE(LG 老师,这个式子没有看懂可以一下吗?谢谢

2020-03-22 16:50 1 · 回答