开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

王10 · 2023年10月26日

先付年金和后付年金的计算

NO.PZ2017092702000008

问题如下:

An investment pays €300 annually for five years, with the first payment occurring today. The present value (PV) of the investment discounted at a 4% annual rate is closest to:

选项:

A.

€1,336.

B.

€1,389.

C.

€1,625.

解释:

B is correct,

as shown in the following calculation for an annuity (A) due:

PV=A[11(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}

where A = €300, r = 0.04, and N = 5.

PV=300[11(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}

PV = €1,388.97, or \approx €1,389.

助教给到的其他人解答的计算器算出来的是后付年金,不是答案。但题目是先付年金,所以计算器要怎么按

2 个答案
已采纳答案

星星_品职助教 · 2023年10月26日

同学你好,

可直接参照上一个提问中的回复:

星星_品职助教 · 2023年11月14日

@王10

先按2ND + 第三行的PMT。如果是后付年金模式,则应显示 END。

再按2ND+第一行的ENTER,此时屏幕从END变为BGN,即此时为先付年金模式。

先付年金需要先调成BGN模式后再计算。

  • 2

    回答
  • 0

    关注
  • 260

    浏览
相关问题

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. N=5, I/Y=4,FV=0,PMT=300, CPT PV=1335.5

2023-10-26 13:44 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 是不是求PV就设FV是0,求FV就设PV是0呀?

2023-07-19 09:46 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 請問r不是應該等于0.04嗎,爲何會有個(1+0.4)^5?

2022-09-23 00:27 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 请问为什么我用计算器BGN模式算出来是1498?求具体计算器怎么按谢谢

2022-07-12 12:46 1 · 回答