开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

JiangHan · 2023年04月10日

GARCH模型

NO.PZ2019040801000079

问题如下:

Anlyst Pengyu is using a GARCH(1,1) model to estimate daily variance on daily returns(rt) :

ht:=α0 + α1r2t-1 + βht-1   

while α0 = 0.000003

α1 = 0.03

β = 0.94

What is the long-run annualized volatility estimate (assuming that volatility increases by the square root of time and 252 trading days in a year ?

选项:

A.

0.015%.

B.

1.00%.

C.

9.27%.

D.

15.87%.

解释:

D is correct.

考点:GARCH(1,1)模型

解析:首先求出γ,GARCH(1,1)中α1+β+γ=1,所以γ=1-0.03-0.94=0.03.

然后long-run daily variance= α0 / γ= 0.000003/0.03= 0.0001

那么波动率就是标准差,用方差开方即可:0.01.

最后年化0.01*(252^0.5)=15.87%

lLongrun daily standard deviation =variance=0.00004=0.6325%Annualized standard deviation=daily standard deviation×time=0.6325%×252=10.04%{l}Long-run\text{ }daily\text{ }standard\text{ }deviation\text{ }=\sqrt{variance}=\sqrt{0.00004}=0.6325\%\\Annualized\text{ }standard\text{ }deviation=daily\text{ }standard\text{ }deviation\times\sqrt{time}\\=0.6325\%\times\sqrt{252}=10.04\%

老师这个知识点有点忘了,可以具体解释一下这个题吗,γ是什么,variance是怎么算出来的

1 个答案

pzqa27 · 2023年04月11日

嗨,从没放弃的小努力你好:


γ是方差的系数,用到的就是GARCH的定义式,已知γ*VL=α0=0.000003,又因为α1+β+γ=1,所以VL=0.0001

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 1

    回答
  • 0

    关注
  • 352

    浏览
相关问题

NO.PZ2019040801000079 问题如下 Anlyst Pengyu is using a GARCH(1,1) mol to estimate ily varianon ily returns(rt) :ht:=α0 + α1r2t-1 + βht-1 while α0 = 0.000003α1 = 0.03β = 0.94Whis the long-run annualizevolatility estimate (assuming thvolatility increases the square root of time an252 trang ys in a ye? A.0.015%. B.1.00%. C.9.27%. 15.87%. is correct.考点GARCH(1,1)模型解析首先求出γ,GARCH(1,1)中α1+β+γ=1,所以γ=1-0.03-0.94=0.03.然后long-run ily variance= α0 / γ= 0.000003/0.03= 0.0001那么波动率就是标准差,用方差开方即可0.01.最后年化0.01*(252^0.5)=15.87% 年化具体的计算过程可以详细讲解一下不,谢谢

2024-08-16 13:11 1 · 回答

NO.PZ2019040801000079问题如下Anlyst Pengyu is using a GARCH(1,1) mol to estimate ily varianon ily returns(rt) :ht:=α0 + α1r2t-1 + βht-1 while α0 = 0.000003α1 = 0.03β = 0.94Whis the long-run annualizevolatility estimate (assuming thvolatility increases the square root of time an252 trang ys in a ye?A.0.015%.B.1.00%.C.9.27%.15.87%. is correct.考点GARCH(1,1)模型解析首先求出γ,GARCH(1,1)中α1+β+γ=1,所以γ=1-0.03-0.94=0.03.然后long-run ily variance= α0 / γ= 0.000003/0.03= 0.0001那么波动率就是标准差,用方差开方即可0.01.最后年化0.01*(252^0.5)=15.87% 可以详细一点嘛。关于年化的计算

2023-11-14 22:54 1 · 回答

NO.PZ2019040801000079 问题如下 Anlyst Pengyu is using a GARCH(1,1) mol to estimate ily varianon ily returns(rt) :ht:=α0 + α1r2t-1 + βht-1 while α0 = 0.000003α1 = 0.03β = 0.94Whis the long-run annualizevolatility estimate (assuming thvolatility increases the square root of time an252 trang ys in a ye? A.0.015%. B.1.00%. C.9.27%. 15.87%. is correct.考点GARCH(1,1)模型解析首先求出γ,GARCH(1,1)中α1+β+γ=1,所以γ=1-0.03-0.94=0.03.然后long-run ily variance= α0 / γ= 0.000003/0.03= 0.0001那么波动率就是标准差,用方差开方即可0.01.最后年化0.01*(252^0.5)=15.87%lLong−run ily stanrviation =variance=0.00004=0.6325%Annualizestanrviation=ily stanrviation×time=0.6325%×252=10.04%{l}Long-run\text{ }ily\text{ }stanrtext{ }viation\text{ }=\sqrt{variance}=\sqrt{0.00004}=0.6325\%\\Annualizetext{ }stanrtext{ }viation=ily\text{ }stanrtext{ }viation\times\sqrt{time}\\=0.6325\%\times\sqrt{252}=10.04\%lLong−run ily stanrviation =variance​=0.00004​=0.6325%Annualizestanrviation=ily stanrviation×time​=0.6325%×252​=10.04% 1.年化日标准差为什么是除以252的0.5次方,为什么不是直接除以252?2.一年是按250还是按252天算?3.Long−run ily stanrviation = 。。。。。。varian=0.00004此处的0.00004是怎么来的?谢谢老师

2023-06-12 14:36 3 · 回答

NO.PZ2019040801000079 这里题目里的 long-run annualizevolatility estimate 就是指模型里的VL吗, 不是指的模型里的sigma

2021-05-12 23:22 4 · 回答