开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

上小学 · 2023年03月29日

请问这个题的DV01计算等于0,1319。根据讲义57页58页的公式。谢谢

NO.PZ2020011303000219

问题如下:

Consider a zero-coupon bond with a face value of USD 100 and a maturity of ten years. What is the DV01 and the effective duration when the ten-year rate is 4% with semi-annual compounding? (Consider one-basis-point changes and measure rates as decimals when calculating duration.)

解释:

The value of the bond is

100/1.0220=67.297133

When the ten-year rate increases to 4.01%, the value decreases by 0.065944 to 67.231190. When the ten-year rate decreases to 3.99%, the value increases by 0.066012 to 67.363145. The DV01 can be estimated as the average of 0.065944 and 0.066012, or 0.065978. The effective duration is 0.065978/(67.297133×0.0001)=9.804

题目问:一个零息债券的面值是100USD,期限是10年,当利率是4%,半年付息一次时,DV01effective duration是多少?

债券的价格V0=100/(1+4%/2)^(10*2)=67.297133

当利率上升1bp4.01%时,债券价格V+=100/(1+4.01%/2)^(10*2)=67.23119

价格下降0.065944

当利率下降1bp3.99%时,债券价格V-=100/(1+3.99%/2)^(10*2)=67.36314

价格上升0.066012

DV01=0.065944 + 0.066012= 0.065978

effective duration=0.065978/(67.297133×0.0001)=9.804

烦请写下计算步骤先谢谢。另外,零息债券久期不是到期日吗?根据57页另一个求DV01的公式不是同样可以求吗?当然两个结果绝对不相同。请问错误在哪里呢?

2 个答案
已采纳答案

李坏_品职助教 · 2023年03月29日

嗨,努力学习的PZer你好:


这里求的是有效久期,effective duration,不是普通的duration。

我们需要先计算出V-和V+。其中V-是:当利率下降1bp到3.99%时,债券价格V-=100/(1+3.99%/2)^(10*2)=67.36314。

V+是当利率上升1bp到4.01%时,债券价格V+=100/(1+4.01%/2)^(10*2)=67.23119,

V0就是利率不变的时候的价格100/(1+4%/2)^(10*2)=67.297133。

所以带入公式:effective duration = ((V-) - (V+)) / (2 * V0 * 0.01%)= 9.804


答案给的过程太繁琐了,不需要用DV01,而且答案解析里面的DV01是写错了,应该是DV01 = (0.065944 + 0.066012)/ 2 = 0.065978(这个数据在本题没什么用,直接套effective duration的公式就行)


----------------------------------------------
加油吧,让我们一起遇见更好的自己!

上小学 · 2023年03月30日

您的答案非常清楚,还加深了对如何计算有效久期的理解,但是计算DV01不就是价格的变化吗,为什么价格的变化还除以2呢?在本题中,计算DV01有几种计算方法?谢谢

李坏_品职助教 · 2023年03月30日

嗨,努力学习的PZer你好:


dv01的意思是当利率变化1个Bp的时候价格的变化量,这里计算的V-情况下的1bp带来的价格变动和V+情况下的1个Bp带来的价格变动,都符合dv01的定义,究竟用哪个呢?比较合理的办法是这两个价格变动量加起来求个平均数。


这个题目里计算DV01也就只能这样去计算了。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 2

    回答
  • 0

    关注
  • 420

    浏览
相关问题

NO.PZ2020011303000219 问题如下 Consir a zero-coupon bonwith a favalue of US100 ana maturity of ten years. Whis the 01 anthe effective ration when the ten-yerate is 4% with semi-annucompounng? (Consir one-basis-point changes anmeasure rates cimals when calculating ration.) The value of the bonis100/1.0220=67.297133When the ten-yerate increases to 4.01%, the value creases 0.065944 to 67.231190. When the ten-yerate creases to 3.99%, the value increases 0.066012 to 67.363145. The 01 cestimatethe average of 0.065944 an0.066012, or 0.065978. The effective ration is 0.065978/(67.297133×0.0001)=9.804题目问一个零息债券的面值是100US期限是10年,当利率是4%,半年付息一次时,01和effective ration是多少?债券的价格V0=100/(1+4%/2)^(10*2)=67.297133当利率上升1bp到4.01%时,债券价格V+=100/(1+4.01%/2)^(10*2)=67.23119价格下降0.065944当利率下降1bp到3.99%时,债券价格V-=100/(1+3.99%/2)^(10*2)=67.36314价格上升0.06601201=(0.065944 +0.066012)/2= 0.065978 effectiveration=0.065978/(67.297133×0.0001)=9.804 N=20,I/Y=2, PMT=2, FV=100求PV,是这样吧?

2024-03-19 13:59 2 · 回答

NO.PZ2020011303000219 问题如下 Consir a zero-coupon bonwith a favalue of US100 ana maturity of ten years. Whis the 01 anthe effective ration when the ten-yerate is 4% with semi-annucompounng? (Consir one-basis-point changes anmeasure rates cimals when calculating ration.) The value of the bonis100/1.0220=67.297133When the ten-yerate increases to 4.01%, the value creases 0.065944 to 67.231190. When the ten-yerate creases to 3.99%, the value increases 0.066012 to 67.363145. The 01 cestimatethe average of 0.065944 an0.066012, or 0.065978. The effective ration is 0.065978/(67.297133×0.0001)=9.804 这个题的ration是10,为什么mofieration不能是10/1+y呢?

2022-07-02 11:00 2 · 回答

老师您好,01的计算可以只通过crease或increase 1%的rate来计算吗?还是只能向答案中写的计算上升和下降的平均值?谢谢

2020-03-10 22:19 2 · 回答